EUREKA MATH™ CONSEJOS PARA PADRES

RESUMEN DE CONCEPTOS CLAVE

En el Tema B, los estudiantes extienden su conocimiento de los exponentes del 5.0 grado a medida que fortalecen su entendimiento del vocabulario relacionado (base, potencia, exponente, al cubo y al cuadrado) y pasan de bases de números enteros a bases escritas en forma fraccionaria y decimal. Después de estudiar los exponentes, los estudiantes expanden su conocimiento del Tema A. Aprenden más del orden de operaciones y cómo se usa para evaluar varias expresiones numéricas examinando operaciones desde el punto de vista de lo potentes que son.

Espere ver tareas que le pidan a su hijo/a que haga lo siguiente:

- Escribir un número en forma exponencial, desarrollada y estándar.
- Explicar por qué una base de número entero elevada a un exponente de número entero se hace más grande mientras que una base fraccionaria elevada a un exponente de número entero se hace más pequeña.
- Enumerar todas las potencias de 3 y 4 que se evalúen a cualquier número entre 3 y 1,000.
- Describir la ventaja de la **notación exponencial** (en vez de una expresión de multiplicación) si todos los factores son los mismos.
- Explicar la diferencia entre expresiones usando su conocimiento de los exponentes. Por ejemplo, $3x y x^3$ son diferentes porque si x tiene un valor de 2, el valor de 3x es 3(2), o 6, y el valor de x^3 es $2 \times 2 \times 2$, u 8.
- Evaluar una expresión usando el orden de operaciones.

MUESTRA DE UN PROBLEMA (Tomado de la Lección 6)

Evalúa usando el orden de operaciones.

$$2^4 \cdot (13 + 5 - 14 \div (3 + 4))$$

$$2^4 \cdot (13 + 5 - 14 \div 7)$$

$$2^4 \cdot (13 + 5 - 2)$$

 $2^4 \cdot 16$

16 · 16

256

Puede encontrar ejemplos adicionales de problemas con pasos de respuesta detallados en los libros de Eureka Math Homework Helpers. Obtenga más información en GreatMinds.org.

CÓMO PUEDE AYUDAR EN CASA

Usted puede ayudar en casa de muchas maneras. Aquí hay algunos consejos para comenzar:

- Con su hijo/a, evalúe las siguientes expresiones (encuentre la respuesta): $(5+3^2) \div (3+4)$ and $5+3^2 \div 3+4$. Discuta por qué las respuestas son diferentes. (Son diferentes por el paréntesis. La primera expresión tiene un valor de 2 y la segunda expresión tiene un valor de 12. Es importante ponerle atención a la colocación de los paréntesis).
- Jeremy piensa que 2⁴ es igual a 8. Suzie piensa que la respuesta es 16. Discuta con su hijo/a quién tiene la razón y por qué. (Suzie tiene la razón porque el exponente dice cuántas veces la base se multiplica por sí misma, 2 × 2 × 2 × 2. El exponente y la base no se deben multiplicar el uno por el otro. El error de Jeremy es muy común, así que asegúrese de que su hijo/a entienda y pueda articular el error).
- ¿Dónde se puede colocar el paréntesis para que la expresión 28 − 3 × 3 + 4 tenga un valor de 7? (Alrededor del 3 + 4). ¿Dónde se puede colocar el paréntesis para que la misma expresión tenga un valor de 79? (Alrededor del 28 − 3). Tyler le agregó un exponente a un término y ahora la expresión (sin paréntesis) tiene un valor de 35. ¿Dónde puso Tyler el exponente? (Él cambió 4 a 4²).

10	CA	DI		-	D I	
w	CA	DL	JL	А	K	IU

Expresión algebraica: una expresión que contiene números, variables y operadores (como + y -) que representan un solo valor y no contiene el signo de igualdad o desigualdad (p. ej., 2m o 9a + 3).

Base: en el término, y^6 , la y es la base, o el factor que se repite, y puede ser una variable o un número.

Al cubo: cuando una base se eleva a la tercera potencia. Por ejemplo, 5³ se puede leer como 5 al cubo.

Evaluar: evaluar una expresión significa encontrar la respuesta.

Notación exponencial para exponentes de números enteros: una manera de escribir números usando exponentes. Por ejemplo, el número 3,125 (forma estándar) se puede escribir como $5 \times 5 \times 5 \times 5 \times 5$ (forma desarrollada) o 5^5 (forma exponencial). Provee una alternativa más sencilla a la forma desarrollada cuando se indica que un número debe multiplicarse por sí mismo repetitivamente. Podemos leer 5^5 como 5 a la quinta potencia.

Exponente: en el término $3y^6$, el 6 es el exponente. El exponente dice cuántas veces se usa la base (y) como un factor.

Expresion numérica: un grupo de números, símbolos y operadores (como + y -) que representan un solo valor y no contienen el signo de igualdad o desigualdad (p. ej., 2×4 o 9(5 + 1)).

Al cuadrado: cuando una base se eleva a la segunda potencia. Por ejemplo, 5² se puede leer como 5 al cuadrado.

Valor de una expresión numérica: el número que se encuentra evaluando la expresión o, en otras palabras, simplificando la expresión en un solo valor. Por ejemplo, el valor de la expresión 3×8 es 24.