EUREKA MATH[®]

G R E A T M I N D S

Grade 8 | Arkansas Mathematics Standards Correlation to Eureka Math®

About Eureka Math

Created by Great Minds®, a mission-driven Public Benefit Corporation, Eureka Math® helps teachers deliver unparalleled math instruction that provides students with a deep understanding and fluency in math. Crafted by teachers and math scholars, the curriculum carefully sequences the mathematical progressions to maximize coherence from Prekindergarten through Precalculus—a principle tested and proven to be essential in students' mastery of math.

Teachers and students using *Eureka Math* find the trademark "Aha!" moments in *Eureka Math* to be a source of joy and inspiration, lesson after lesson, year after year.

Aligned

Great Minds offers detailed analyses that demonstrate how each grade of *Eureka Math* aligns with specific state standards. Access these free alignment studies at <u>greatminds.org/state-studies</u>.

Data

Schools and districts nationwide are experiencing student growth and impressive test scores after using *Eureka Math*. See their stories and data at <u>greatminds.org/data</u>.

Full Suite of Resources

Great Minds offers the *Eureka Math* curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at <u>greatminds.org/math/curriculum</u>.

The teacher-writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:

- · Printed material in English and Spanish
- Digital resources
- Professional development
- · Classroom tools and manipulatives
- Teacher support materials
- Parent resources

Standards for Mathematical Practice

MP.1

Make sense of problems and persevere in solving them.

MP.2

Reason abstractly and quantitatively.

MP.3

Construct viable arguments and critique the reasoning of others.

MP.4

Model with mathematics.

MP.5

Use appropriate tools strategically.

MP.6

Attend to precision.

MP.7

Look for and make use of structure.

MP.8

Look for and express regularity in repeated reasoning.

Aligned Components of Eureka Math

Lessons in every module engage students in mathematical practices. These are designated in the Module Overview and labeled in lessons.

For example:

A STORY OF RATIOS

Lesson 1 8•5

- Let's make a prediction based on a value of x that is not listed in the table. How far did the stone drop in the first 3.5 seconds? What have we done in the past to figure something like this out?
 - We wrote a proportion using the known times and distances.

Allow students time to work with proportions. Encourage them to use more than one pair of data values to determine an answer. Some students might suggest they cannot use proportions for this work as they have just ascertained that there is not a constant rate of change. Acknowledge this. The work with proportions some students do will indeed confirm this.

Sample student work:

Let x be the distance, in feet, the stone drops in 3.5 seconds.

$$\frac{16}{1} = \frac{x}{3.5}$$

$$\frac{64}{2} = \frac{x}{3.5}$$

$$\frac{144}{3} = \frac{x}{3.5}$$

$$x = 56$$

$$2x = 224$$

$$x = 112$$

$$x = 168$$

- Is it reasonable that the stone would drop 56 feet in 3.5 seconds? Explain.
 - ^a No, it is not reasonable. Our data shows that after 2 seconds, the stone has already dropped 64 feet. Therefore, it is impossible that it could have only dropped 56 feet in 3.5 seconds.
- What about 112 feet in 3.5 seconds? How reasonable is that answer? Explain.
 - The answer of 112 feet in 3.5 seconds is not reasonable either. The data shows that the stone dropped
- What about 168 feet in 3.5 seconds? What do you think about that answer? Explain.
 - That answer is the most likely because at least it is greater than the recorded 144 feet in 3 seconds.
- What makes you think that the work done with a third proportion will give us a correct answer when the first two did not? Can we rely on this method for determining an answer?
 - This does not seem to be a reliable method. If we had only done one computation and not evaluated the reasonableness of our answer, we would have been wrong.

Number Concepts & Computations

Rational & Irrational Numbers

Students understand relationships among numbers and the real number system.

Arkansas Mathematics Standards

Aligned Components of Eureka Math

8.NCC.1	G8 M7 Topic B: Decimal Expansions of Numbers	
Describe relationships in the real number system (rational and irrational).		
8.NCC.2	G8 M7 Lesson 1: The Pythagorean Theorem	
Compare the size of irrational numbers	G8 M7 Lesson 2: Square Roots	
and locate them on a number line	G8 M7 Lesson 3: Existence and Uniqueness of Square Roots and Cube Roots	
by finding the rational approximations.	G8 M7 Lesson 4: Simplifying Square Roots	
	G8 M7 Lesson 11: The Decimal Expansion of Some Irrational Numbers	
	G8 M7 Lesson 13: Comparing Irrational Numbers	
	G8 M7 Lesson 14: Decimal Expansion of π	
8.NCC.3	G8 M1 Topic A: Exponential Notation and Properties of Integer Exponents	
Know and apply the properties of integer exponents to generate equivalent numerical expressions.		
8.NCC.4	G8 M1 Lesson 7: Magnitude	
Write very large and very small numbers in scientific notation using positive and negative exponents.	G8 M1 Lesson 8: Estimating Quantities	

Arkansas Mathematics Standards

Aligned Components of Eureka Math

8.NCC.5	G8 M1 Lesson 9: Scientific Notation		
Compare numbers written in scientific notation to determine how many times larger or smaller one number is than the other, using real-world and mathematical problems. 8.NCC.6	G8 M1 Lesson 10: Operations with Numbers in Scientific Notation G8 M1 Lesson 11: Efficacy of Scientific Notation G8 M1 Lesson 12: Choice of Unit		
	G8 M1 Lesson 13: Comparison of Numbers Written in Scientific Notation and Interpreting Scientific Notation Using Technology G8 M1 Lesson 9: Scientific Notation		
Solve real-world and mathematical problems by performing operations with numbers written in standard and scientific notation.	G8 M1 Lesson 10: Operations with Numbers in Scientific Notation G8 M1 Lesson 11: Efficacy of Scientific Notation G8 M1 Lesson 12: Choice of Unit G8 M1 Lesson 13: Comparison of Numbers Written in Scientific Notation and Interpreting Scientific Notation Using Technology		

Number Concepts & Computations

Rational Number Operations
Students work with square and cube roots.

Arkansas Mathematics Standards

Aligned Components of Eureka Math

8.NCC.7	G8 M7 Lesson 5: Solving Equations with Radicals
Solve equations in the form of $x^2 = p$ or $x^3 = p$ where p is a positive rational number.	
8.NCC.8	G8 M7 Lesson 2: Square Roots
Evaluate square roots of perfect squares and cube roots of perfect cubes.	G8 M7 Lesson 5: Solving Equations with Radicals

Functions

Proportional & Linear Relationships

Students understand slope using previous learning of proportional relationships.

Arkansas Mathematics Standards

Aligned Components of Eureka Math

8.FN.1 Graph proportional relationships, interpreting the unit rate as the slope of the graph.	G8 M4 Topic B: Linear Equations in Two Variables and Their Graphs G8 M4 Lesson 15: The Slope of a Non-Vertical Line G8 M4 Lesson 22: Constant Rates Revisited
8.FN.2 Explain, using similar right triangles, how the slope of a line is the same between two points on a non-vertical line or non-horizontal line.	G8 M4 Lesson 16: The Computation of the Slope of a Non-Vertical Line G8 M4 Lesson 17: The Line Joining Two Distinct Points of the Graph $y = mx + b$ has Slope m G8 M4 Lesson 18: There is Only One Line Passing Through a Given Point with a Given Slope G8 M4 Lesson 19: The Graph of a Linear Equation in Two Variables is a Line G8 M4 Lesson 20: Every Line is a Graph of a Linear Equation G8 M4 Lesson 21: Some Facts About Graphs of a Linear Equation in Two Variables G8 M4 Lesson 22: Constant Rates Revisited G8 M4 Lesson 23: The Defining Equation of a Line

Functions

Functions

Students understand that a function is a rule that assigns each input exactly one output.

Arkansas Mathematics Standards

Aligned Components of Eureka Math

G8 M5 Lesson 1: The Concept of a Function	
G8 M5 Lesson 2: Formal Definition of a Function	
G8 M5 Lesson 4: More Examples of Functions	
G8 M5 Lesson 5: Graphs of Functions and Equations	
G8 M5 Lesson 6: Graphs of Linear Functions and Rate of Change	
G8 M5 Lesson 8: Graphs of Simple Nonlinear Functions	
Algebra I M3 Lesson 10: Representing, Naming, and Evaluating Functions	
Supplemental material is necessary to address determining whether a relation is a function when given a function map.	
G8 M5 Lesson 7: Comparing Linear Functions and Graphs	
G8 M5 Lesson 5: Graphs of Functions and Equations	
G8 M5 Lesson 6: Graphs of Linear Functions and Rate of Change	
G8 M5 Lesson 8: Graphs of Simple Nonlinear Functions	

Arkansas Mathematics Standards

Aligned Components of Eureka Math

8.FN.6	G8 M5 Lesson 6: Graphs of Linear Functions and Rate of Change
Determine the rate of change (slope)	G8 M5 Lesson 7: Comparing Linear Functions and Graphs
and y-intercept (initial value) from	G8 M6 Lesson 1: Modeling Linear Relationships
tables, graphs, equations, and verbal descriptions of linear relationships.	G8 M6 Lesson 2: Interpreting Rate of Change and Initial Value
	G8 M6 Lesson 3: Representations of a Line
8.FN.7	G8 M6 Lesson 1: Modeling Linear Relationships
Interpret and explain the meaning of the	G8 M6 Lesson 2: Interpreting Rate of Change and Initial Value
rate of change (slope) and <i>y</i> -intercept (initial value) of a linear relationship in a real-world context.	G8 M6 Lesson 3: Representations of a Line
8.FN.8	G8 M6 Lesson 2: Interpreting Rate of Change and Initial Value
Analyze a graph by describing the	G8 M6 Lesson 3: Representations of a Line
functional relationships between two	G8 M6 Lesson 4: Increasing and Decreasing Functions
quantities.	G8 M6 Lesson 5: Increasing and Decreasing Functions
8.FN.9	G8 M6 Lesson 2: Interpreting Rate of Change and Initial Value
Sketch a graph that exhibits qualitative features of a function described verbally.	G8 M6 Lesson 3: Representations of a Line
	G8 M6 Lesson 4: Increasing and Decreasing Functions
	G8 M6 Lesson 5: Increasing and Decreasing Functions

Algebra

Equations & Inequalities

Students solve linear equations and inequalities.

Arkansas Mathematics Standards

Aligned Components of Eureka Math

8.ALG.1	G8 M4 Topic A: Writing and Solving Linear Equations	
Analyze and solve one-variable linear equations with rational coefficients containing solutions with one, zero, or infinitely many solutions.		
8.ALG.2	G7 M3 Lesson 12: Properties of Inequalities	
Analyze and solve one-variable linear inequalities with rational coefficients.	G7 M3 Lesson 13: Inequalities	
	G7 M3 Lesson 14: Solving Inequalities	
	G7 M3 Lesson 15: Graphing Solutions to Inequalities	

Algebra

Systems of Equations

Students will solve systems of equations.

Arkansas Mathematics Standards

Aligned Components of Eureka Math

8.ALG.3	G8 M4 Topic D: Systems of Equations and Their Solutions
Analyze and solve systems of linear equations in the form $y = mx + b$ in real-world or mathematical contexts, graphically and algebraically.	G8 M4 Topic E: Pythagorean Theorem

Geometry & Measurement

Area, Volume, & Surface Area

Students solve problems involving area, volume, and surface area.

Arkansas Mathematics Standards

Aligned Components of Eureka Math

8.GM.1

Apply the formulas for the volume and surface area of cylinders, cones, and spheres to solve real-world and mathematical problems. G8 M5 Topic B: Volume

G8 M7 Lesson 19: Cones and Spheres

G8 M7 Lesson 20: Truncated Cones

G8 M7 Lesson 21: Volume of Composite Solids

G8 M7 Lesson 22: Average Rate of Change

Geometry & Measurement

Cross Sections

Students describe cross sections of three-dimensional figures.

Arkansas Mathematics Standards

Aligned Components of Eureka Math

8.GM.2

Describe the two-dimensional figure that results from slicing a three-dimensional figure parallel and perpendicular to the base.

G7 M6 Lesson 16: Slicing a Right Rectangular Prism with a Plane

G7 M6 Lesson 17: Slicing a Right Rectangular Pyramid with a Plane

G7 M6 Lesson 19: Understanding Three-Dimensional Figures

Geometry & Measurement

Pythagorean Theorem

Students explore right triangles and apply the Pythagorean Theorem.

Arkansas Mathematics Standards

Aligned Components of Eureka Math

8.GM.3 Model or explain an informal proof of the Pythagorean Theorem and its converse.	G8 M2 Lesson 15: Informal Proof of the Pythagorean Theorem G8 M3 Topic C: The Pythagorean Theorem G8 M7 Lesson 15: Pythagorean Theorem, Revisited G8 M7 Lesson 16: Converse of the Pythagorean Theorem	
8.GM.4 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles.	G8 M2 Topic D: The Pythagorean Theorem G8 M3 Topic C: The Pythagorean Theorem G8 M7 Lesson 1: The Pythagorean Theorem G8 M7 Lesson 4: Simplifying Square Roots G8 M7 Lesson 5: Solving Equations with Radicals G8 M7 Lesson 17: Distance on the Coordinate Plane G8 M7 Lesson 18: Applications of the Pythagorean Theorem G8 M7 Lesson 19: Cones and Spheres G8 M7 Lesson 23: Nonlinear Motion	
8.GM.5 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	G8 M2 Lesson 16: Applications of the Pythagorean Theorem G8 M7 Lesson 17: Distance on the Coordinate Plane	

Geometry & Measurement

Transformations & Congruence on a Coordinate Plane
Students use concrete models, diagrams, or geometry to understand congruence and similarity.

Arkansas Mathematics Standards

Aligned Components of Eureka Math

8.GM.6	Supplemental material is necessary to address this standard.	
Given a figure, draw a congruent figure on a coordinate plane resulting from a rotation, reflection, or translation.		
8.GM.7 Identify a single transformation used to transform one figure onto another on a coordinate plane.	Supplemental material is necessary to address this standard.	
8.GM.8 Given two congruent figures, describe a sequence of transformations that maps one figure to another.	G8 M2 Topic B: Sequencing the Basic Rigid Motions	
8.GM.9 Perform a given sequence of transformations of a figure on the coordinate plane, including rotations, reflections, translations, and dilations.	G8 M2 Topic B: Sequencing the Basic Rigid Motions	
8.GM.10 Describe the effects of rotations, reflections, translations, and dilations on two-dimensional figures using coordinates.	G8 M3 Topic A: Dilation G8 M3 Lesson 8: Similarity Supplemental material is necessary to address the effects of rotations, reflections, and translations on two-dimensional figures using coordinates.	

Arkansas Mathematics Standards

Aligned Components of Eureka Math

Given two similar two-dimensional figures, describe a sequence of transformations that exhibits similarity, including rotations, reflections, translations, and dilations.

G8 M3 Lesson 8: Similarity

G8 M3 Lesson 9: Basic Properties of Similarity

Statistics & Probability

Bivariate Data

Students investigate patterns of association to bivariate data.

Arkansas Mathematics Standards

Aligned Components of Eureka Math

8.SP.1 Construct scatter plots using bivariate data; determine if the data displays a linear or nonlinear pattern and positive, negative, or no association.	G8 M6 Lesson 6: Scatter Plots G8 M6 Lesson 7: Patterns in Scatter Plots G8 M6 Lesson 11: Using Linear Models in a Data Context G8 M6 Lesson 12: Nonlinear Models in a Data Context
8.SP.2 Construct straight lines to approximately fit data displaying a linear association when presented in scatter plots.	G8 M6 Lesson 8: Informally Fitting a Line G8 M6 Lesson 9: Determining the Equation of a Line Fit to Data G8 M6 Lesson 11: Using Linear Models in a Data Context
8.SP.3 Construct and interpret a relative frequency table, using data from two categorical variables collected from the same subject.	G8 M6 Topic D: Bivariate Categorical Data

Statistics & Probability

Probability

Students understand theoretical and experimental probability for compound experiments using organized lists, tables, or tree diagrams.

Arkansas Mathematics Standards

Aligned Components of Eureka Math

8.SP.4	G7 M5 Lesson 6: Using Tree Diagrams to Represent a Sample Space and to Calculate Probabilities
Determine the sample space and use the sample space to determine the theoretical probability of a given set of outcomes for compound experiments, using organized lists, tables, or tree diagrams.	G7 M5 Lesson 7: Calculating Probabilities of Compound Events
8.SP.5 Determine theoretical and experimental probabilities of compound experiments.	G7 M5 Lesson 6: Using Tree Diagrams to Represent a Sample Space and to Calculate Probabilities G7 M5 Lesson 7: Calculating Probabilities of Compound Events G7 M5 Lesson 10: Conducting a Simulation to Estimate the Probability of an Event G7 M5 Lesson 11: Conducting a Simulation to Estimate the Probability of an Event
8.SP.6 Use theoretical probability of an event in a compound experiment to predict the number of times that event will occur for a large number of experiments.	Supplemental material is necessary to address this standard.